Structural Tractability of Shapley and Banzhaf Values in Allocation Games
نویسندگان
چکیده
Allocation games are coalitional games defined in the literature as a way to analyze fair division problems of indivisible goods. The prototypical solution concepts for them are the Shapley value and the Banzhaf value. Unfortunately, their computation is intractable, formally #P-hard. Motivated by this bad news, structural requirements are investigated which can be used to identify islands of tractability. The main result is that, over the class of allocation games, the Shapley value and the Banzhaf value can be computed in polynomial time when interactions among agents can be formalized as graphs of bounded treewidth. This is shown by means of technical tools that are of interest in their own and that can be used for analyzing different kinds of coalitional games. Tractability is also shown for games where each good can be assigned to at most two agents, independently of their interactions.
منابع مشابه
Obtaining a possible allocation in the bankruptcy model using the Shapley value
Data envelopment analysis (DEA) is an effective tool for supporting decision-makers to assess bankruptcy, uncertainty concepts including intervals, and game theory. The bankruptcy problem with the qualitative parameters is an economic problem under uncertainty. Accordingly, we combine the concepts of the DEA game theory and uncertain models as interval linear programming (ILP), which can be app...
متن کاملSpanning connectivity games
The Banzhaf index, Shapley-Shubik index and other voting power indices measure the importance of a player in a coalitional game. We consider a simple coalitional game called the spanning connectivity game (SCG) based on an undirected, unweighted multigraph, where edges are players. We examine the computational complexity of computing the voting power indices of edges in the SCG. It is shown tha...
متن کاملA TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS
In this paper, we deal with games with fuzzy payoffs. We proved that players who are playing a zero-sum game with fuzzy payoffs against Nature are able to increase their joint payoff, and hence their individual payoffs by cooperating. It is shown that, a cooperative game with the fuzzy characteristic function can be constructed via the optimal game values of the zero-sum games with fuzzy payoff...
متن کاملCooperative Benefit and Cost Games under Fairness Concerns
Solution concepts in cooperative games are based on either cost games or benefit games. Although cost games and benefit games are strategically equivalent, that is not the case in general for solution concepts. Motivated by this important observation, a new property called invariance property with respect to benefit/cost allocation is introduced in this paper. Since such a property can be regar...
متن کاملParallel characterizations of a generalized Shapley value and a generalized Banzhaf value for cooperative games with level structure of cooperation
We present parallel characterizations of two di erent values in the framework of restricted cooperation games. The restrictions are introduced as a nite sequence of partitions de ned on the player set, each of them being coarser than the previous one, hence forming a structure of di erent levels of a priori unions. On the one hand, we consider a value rst introduced in , 8), which extends the S...
متن کامل